如前所述,在前几章内容中笔者简单介绍了内存读写的基本实现方式,这其中包括了CR3切换读写,MDL映射读写,内存拷贝读写,本章将在如前所述的读写函数进一步封装,并以此来实现驱动读写内存浮点数的目的。
内存浮点数的读写依赖于读写内存字节的实现,因为浮点数本质上也可以看作是一个字节集,对于单精度浮点数来说这个字节集列表是4字节,而对于双精度浮点数,此列表长度则为8字节。
如下代码片段摘取自本人的LyMemory驱动读写项目,函数ReadProcessMemoryByte用于读取内存特定字节类型的数据,函数WriteProcessMemoryByte则用于写入字节类型数据,完整代码如下所示;
这段代码中依然采用了《内核MDL读写进程内存》中所示的读写方法,通过MDL附加到进程并RtlCopyMemory拷贝数据,至于如何读写字节集只需要循环读写即可实现;
| #include <ntifs.h>#include <windef.h>
 
 
 BYTE ReadProcessMemoryByte(HANDLE Pid, ULONG64 Address, DWORD Size)
 {
 KAPC_STATE state = { 0 };
 BYTE OpCode;
 
 PEPROCESS Process;
 PsLookupProcessByProcessId((HANDLE)Pid, &Process);
 
 
 KeStackAttachProcess(Process, &state);
 
 __try
 {
 
 ProbeForRead((HANDLE)Address, Size, 1);
 RtlCopyMemory(&OpCode, (BYTE *)Address, Size);
 }
 __except (EXCEPTION_EXECUTE_HANDLER)
 {
 
 KeUnstackDetachProcess(&state);
 
 
 ObDereferenceObject(Process);
 
 return FALSE;
 }
 
 
 KeUnstackDetachProcess(&state);
 
 ObDereferenceObject(Process);
 DbgPrint("[内核读字节] # 读取地址: 0x%x 读取数据: %x \n", Address, OpCode);
 
 return OpCode;
 }
 
 
 BOOLEAN WriteProcessMemoryByte(HANDLE Pid, ULONG64 Address, DWORD Size, BYTE *OpCode)
 {
 KAPC_STATE state = { 0 };
 
 PEPROCESS Process;
 PsLookupProcessByProcessId((HANDLE)Pid, &Process);
 
 
 KeStackAttachProcess(Process, &state);
 
 
 PMDL mdl = IoAllocateMdl((HANDLE)Address, Size, 0, 0, NULL);
 if (mdl == NULL)
 {
 return FALSE;
 }
 
 
 MmBuildMdlForNonPagedPool(mdl);
 BYTE* ChangeData = NULL;
 
 __try
 {
 
 ChangeData = (BYTE *)MmMapLockedPages(mdl, KernelMode);
 }
 __except (EXCEPTION_EXECUTE_HANDLER)
 {
 
 IoFreeMdl(mdl);
 
 
 KeUnstackDetachProcess(&state);
 
 ObDereferenceObject(Process);
 return FALSE;
 }
 
 
 RtlCopyMemory(ChangeData, OpCode, Size);
 DbgPrint("[内核写字节] # 写入地址: 0x%x 写入数据: %x \n", Address, OpCode);
 
 
 ObDereferenceObject(Process);
 MmUnmapLockedPages(ChangeData, mdl);
 KeUnstackDetachProcess(&state);
 return TRUE;
 }
 
 | 
实现读取内存字节集并将读入的数据放入到LySharkReadByte字节列表中,代码如下所示通过调用ReadProcessMemoryByte都内存字节并每次0x401000 + i在基址上面增加变量i以此来实现字节集读取;
| NTSTATUS DriverEntry(IN PDRIVER_OBJECT Driver, PUNICODE_STRING RegistryPath)
 {
 DbgPrint("Hello LyShark \n");
 
 
 BYTE LySharkReadByte[8] = { 0 };
 
 for (size_t i = 0; i < 8; i++)
 {
 LySharkReadByte[i] = ReadProcessMemoryByte(4884, 0x401000 + i, 1);
 }
 
 
 for (size_t i = 0; i < 8; i++)
 {
 DbgPrint("[+] 打印数据: %x \n", LySharkReadByte[i]);
 }
 
 Driver->DriverUnload = UnDriver;
 return STATUS_SUCCESS;
 }
 
 | 
运行如上代码片段,你会看到如下图所示的读取效果;

那么如何实现写内存字节集呢?其实写入内存字节集与读取基本类似,通过填充LySharkWriteByte字节集列表,并调用WriteProcessMemoryByte函数依次循环字节集列表即可实现写出字节集的目的;
| NTSTATUS DriverEntry(IN PDRIVER_OBJECT Driver, PUNICODE_STRING RegistryPath)
 {
 DbgPrint("Hello LyShark \n");
 
 
 BYTE LySharkWriteByte[8] = { 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90 };
 
 for (size_t i = 0; i < 8; i++)
 {
 BOOLEAN ref = WriteProcessMemoryByte(4884, 0x401000 + i, 1, LySharkWriteByte[i]);
 DbgPrint("[*] 写出状态: %d \n", ref);
 }
 
 Driver->DriverUnload = UnDriver;
 return STATUS_SUCCESS;
 }
 
 | 
运行如上代码片段,即可将LySharkWriteByte[8]中的字节集写出到内存0x401000 + i的位置处,输出效果图如下所示;

接下来不如本章的重点内容,首先实现读内存单精度与双精度浮点数的目的,实现原理是通过读取BYTE类型的前4或者8字节的数据,并通过*((FLOAT*)buffpyr)将其转换为浮点数,通过此方法即可实现字节集到浮点数的转换,而决定是单精度还是双精度则只是一个字节集长度问题,这段读写代码实现原理如下所示;
| FLOAT ReadProcessFloat(DWORD Pid, ULONG64 Address)
 {
 BYTE buff[4] = { 0 };
 BYTE* buffpyr = buff;
 
 for (DWORD x = 0; x < 4; x++)
 {
 BYTE item = ReadProcessMemoryByte(Pid, Address + x, 1);
 buff[x] = item;
 }
 
 return *((FLOAT*)buffpyr);
 }
 
 
 DOUBLE ReadProcessMemoryDouble(DWORD Pid, ULONG64 Address)
 {
 BYTE buff[8] = { 0 };
 BYTE* buffpyr = buff;
 
 for (DWORD x = 0; x < 8; x++)
 {
 BYTE item = ReadProcessMemoryByte(Pid, Address + x, 1);
 buff[x] = item;
 }
 
 return *((DOUBLE*)buffpyr);
 }
 
 
 VOID UnDriver(PDRIVER_OBJECT driver)
 {
 DbgPrint("Uninstall Driver \n");
 }
 
 
 NTSTATUS DriverEntry(IN PDRIVER_OBJECT Driver, PUNICODE_STRING RegistryPath)
 {
 DbgPrint("Hello LyShark \n");
 
 
 FLOAT fl = ReadProcessFloat(4884, 0x401000);
 DbgPrint("[读取单精度] = %d \n", fl);
 
 
 DOUBLE fl = ReadProcessMemoryDouble(4884, 0x401000);
 DbgPrint("[读取双精度] = %d \n", fl);
 
 Driver->DriverUnload = UnDriver;
 return STATUS_SUCCESS;
 }
 
 | 
如上代码就是实现浮点数读写的关键所在,这段代码中的浮点数传值如果在内核中会提示无法解析的外部符号 _fltused此处只用于演示核心原理,如果想要实现不报错,该代码中的传值操作应在应用层进行,而传入参数也应改为字节类型即可。
同理,对于写内存浮点数而言依旧如此,只是在接收到用户层传递参数后应对其dtoc双精度浮点数转为CHAR或者ftoc单精度浮点数转为CHAR类型,再写出即可;
| VOID dtoc(double dvalue, unsigned char* arr)
 {
 unsigned char* pf;
 unsigned char* px;
 unsigned char i;
 
 
 pf = (unsigned char*)&dvalue;
 
 
 px = arr;
 
 for (i = 0; i < 8; i++)
 {
 
 *(px + i) = *(pf + i);
 }
 }
 
 
 VOID ftoc(float fvalue, unsigned char* arr)
 {
 unsigned char* pf;
 unsigned char* px;
 unsigned char i;
 
 
 pf = (unsigned char*)&fvalue;
 
 
 px = arr;
 
 for (i = 0; i < 4; i++)
 {
 
 *(px + i) = *(pf + i);
 }
 }
 
 
 BOOL WriteProcessMemoryFloat(DWORD Pid, ULONG64 Address, FLOAT write)
 {
 BYTE buff[4] = { 0 };
 ftoc(write, buff);
 
 for (DWORD x = 0; x < 4; x++)
 {
 BYTE item = WriteProcessMemoryByte(Pid, Address + x, buff[x], 1);
 buff[x] = item;
 }
 
 return TRUE;
 }
 
 
 BOOL WriteProcessMemoryDouble(DWORD Pid, ULONG64 Address, DOUBLE write)
 {
 BYTE buff[8] = { 0 };
 dtoc(write, buff);
 
 for (DWORD x = 0; x < 8; x++)
 {
 BYTE item = WriteProcessMemoryByte(Pid, Address + x, buff[x], 1);
 buff[x] = item;
 }
 
 return TRUE;
 }
 
 
 VOID UnDriver(PDRIVER_OBJECT driver)
 {
 DbgPrint("Uninstall Driver \n");
 }
 
 
 NTSTATUS DriverEntry(IN PDRIVER_OBJECT Driver, PUNICODE_STRING RegistryPath)
 {
 DbgPrint("Hello LyShark \n");
 
 
 FLOAT LySharkFloat1 = 12.5;
 INT fl = WriteProcessMemoryFloat(4884, 0x401000, LySharkFloat1);
 DbgPrint("[写单精度] = %d \n", fl);
 
 
 DOUBLE LySharkFloat2 = 12.5;
 INT d1 = WriteProcessMemoryDouble(4884, 0x401000, LySharkFloat2);
 DbgPrint("[写双精度] = %d \n", d1);
 
 Driver->DriverUnload = UnDriver;
 return STATUS_SUCCESS;
 }
 
 |