8.9 RDTSC时钟检测反调试
RDTSC时钟检测同样可实现反调试检测,使用时钟检测方法是利用`rdtsc`汇编指令,它返回至系统重新启动以来的时钟数,并且将其作为一个64位的值存入`EDX:EAX`寄存器中,通过运行两次`rdstc`指令,然后计算出他们之间的差值,即可判定对方是否在调试我们的程序。
RDTSC时钟检测同样可实现反调试检测,使用时钟检测方法是利用`rdtsc`汇编指令,它返回至系统重新启动以来的时钟数,并且将其作为一个64位的值存入`EDX:EAX`寄存器中,通过运行两次`rdstc`指令,然后计算出他们之间的差值,即可判定对方是否在调试我们的程序。
反调试技术是指恶意程序中使用的一些手段,用于防止被反病毒工程师或调试程序进行分析。恶意程序使用反调试技术以判断自身是否正在被调试并有意识地阻止调试行为的进行。除了防止恶意程序被分析和检测之外,反调试技术还可用于保护合法程序不被恶意破解。实现反调试技术的方式有多种,本章将依次介绍这些反调试技术的实现原理,并使用C语言实现这些技术。
动态反汇编调试器是一种软件工具,用于分析和调试二进制程序的执行过程。它能够将二进制程序转换为可读的汇编代码,并提供了一系列的调试功能,帮助开发人员理解和控制程序的执行流程,本篇文章将重点分析动态反汇编调试软件中,软件断点,硬件断点,内存断点,寄存器参数,单步步入,步过,反汇编等功能的实现原理。
python是一种面向对象的编程语言,面向对象编程(Object-Oriented Programming,OOP)是一种编程思想,其核心概念是“对象”。对象是指一个具有特定属性和行为的实体,而面向对象编程就是通过对这些实体进行抽象、分类、封装和继承等操作,来实现程序的结构和逻辑。在python中,我们可以通过定义类、创建实例和调用方法等方式,来实现面向对象编程的思想,从而编写出更加灵活、可扩展、易维护的程序。
对于网络通信中的服务端来说,显然不可能是一对一的,我们所希望的是服务端启用一份则可以选择性的与特定一个客户端通信,而当不需要与客户端通信时,则只需要将该套接字挂到链表中存储并等待后续操作,套接字服务端通过多线程实现存储套接字和选择通信,可以提高服务端的并发性能,使其能够同时处理多个客户端的请求。在实际应用场景中,这种技术被广泛应用于网络编程、互联网应用等领域。
网络上的文件传输功能也是很有必要实现一下的,网络传输文件的过程通常分为客户端和服务器端两部分。客户端可以选择上传或下载文件,将文件分块并逐块发送到服务器,或者从服务器分块地接收文件。服务器端接收来自客户端的请求,根据请求类型执行对应的操作,并根据发送的文件名或其他标识来确定要传输的文件。
C/C++语言是一种通用的编程语言,具有高效、灵活和可移植等特点。C语言主要用于系统编程,如操作系统、编译器、数据库等;C语言是C语言的扩展,增加了面向对象编程的特性,适用于大型软件系统、图形用户界面、嵌入式系统等。C/C++语言具有很高的效率和控制能力,但也需要开发人员自行管理内存等底层资源,对于初学者来说可能会有一定的难度。
在本节,我们将继续深入探讨套接字通信技术,并介绍一种常见的用法,实现反向远程命令执行功能。对于安全从业者而言,经常需要在远程主机上执行命令并获取执行结果。本节将介绍如何利用 `_popen()` 函数来启动命令行进程,并将输出通过套接字发送回服务端,从而实现远程命令执行的功能。在实现反向远程命令执行时,我们可以使用 `_popen(buf, "r")` 函数来执行特定的命令,并将其输出重定向到一个可读的缓冲区中。这个缓冲区将保存命令的输出内容,我们可以将其发送回控制程序,也就是服务端,从而实现远程命令执行的目标。
通常情况下我们在编写套接字通信程序时都会实现一收一发的通信模式,当客户端发送数据到服务端后,我们希望服务端处理请求后同样返回给我们一个状态值,并以此判断我们的请求是否被执行成功了,另外增加收发同步有助于避免数据包粘包问题的产生,在多数开发场景中我们都会实现该功能。Socket粘包是指在使用TCP协议传输数据时,发送方连续向接收方发送多个数据包时,接收方可能会将它们合并成一个或多个大的数据包,而不是按照发送方发送的原始数据包拆分成多个小的数据包进行接收。
C/C++语言是一种通用的编程语言,具有高效、灵活和可移植等特点。C语言主要用于系统编程,如操作系统、编译器、数据库等;C语言是C语言的扩展,增加了面向对象编程的特性,适用于大型软件系统、图形用户界面、嵌入式系统等。C/C++语言具有很高的效率和控制能力,但也需要开发人员自行管理内存等底层资源,对于初学者来说可能会有一定的难度。